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Plenty of evidence for dark matter (DM)
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More plenty of candidates for dark matter
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Which one is the better motivated candidate?

Axion is one of the few best motivated DM candidates.



Axion has been introduced to solve the strong CP problem:

: : : 0 3
CP violation in the SM: %Ga’“’Giy + (yqHaLqg + h.c)

= = fqocp + Arg - Det(yq) (CP violation in the strong interactions)

dxkm ~ Arg(yq) (CP violation in the weak interactions)
Nearly maximal CP violation in the weak interactions = dxm ~ 1

CP conserving strong interactions = || = |fqcp + Arg - Det(y,)| < 10717

(Neutron EDM: d, ~ 1077 e.cm < 107 e.cm )
Why [8qcp+ Arg Det(y,)| < 10719, while &y, ~ Arg(y,) ~ 17

Anthrophic argument can not explain this puzzle, it is thus likely that

there should exist some physical reason for the small value of ¢ .



Axion solution of the strong CP problem

Introduce a spontaneously broken anomalous global U(1) symmetry
(Peccei-Quinn symmetry)

2>  BOqcp becomes a dynamical field “axion”
= Nambu-Goldstone boson of the spontaneously broken U(1)pq

<a> Ga;rzx ('f_:a

=T 1
32?2 (HQC.‘-D + Alg ) DEt(}q)) G* C",rrzx — 32??2 fa piv

f, = Axion scale = Mass scale of the spontaneous breakdown of U(1)pq

(Axion decay constant)

Low energy QCD dynamics develops an axion potential minimized at <a > = O:

N

N R,chn(a)]
=2 QCD becomes CP conserving

after the axion is settled down
. . at its VEV.

(a) =0 a/t,




Most of axion physics is determined by the axion scale f,;

1012 GeV
F ¢ )e\f

* axion mass (at present) : m, ~ 5 x 107° (

* axion-photon couplings

> L 1012 GeV
ga‘}_, AaB-B 1 Zay ~ 10—15( ¢ ) GeV~!
* axion-nucleon couplings
. 1012 GeV
ganaNTBEN ¢ gann ~ 10_12( 7 - )

Star cooling by axion emission: f, > 4 x108 GeV

=2 1, » 10 sec, so once axions were produced in the early universe,

they constitute (part of) the DM in the present universe.



Cosmological production of axion dark matter:

Misalignment + Topological defects (PQ-strings and domain walls)

Initial axion field misaligned PQ-string attached
from the minimum of the axion potential by axion domain wall ___—

1 (if the PQ phase transition
took place after inflation
- R

> a/fa /

7/6

> Cold axions with €2, ~ 0.2 (62, + Raefect) (wlifaev) (fa < O(10" GeV)

~ 30 = Efficiency factor for the axion production
by collapsing string-wall system

Cold axion DM is a generic consequence of solving the strong CP problem
with a PQ symmetry, but the question is whether the axion abundance

can have a right value, i.e. Q = 0.24

axion



QCD axion has a good potential to be experimentally tested!
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Axion dark matter search with microwave cavity

ADMX (Axion Dark Matter eXperiment) (Seattle, USA)
vs CAPP (Center for Axion and Precision Physics) (IBS/KAIST, Korea)
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Cosmological constraints on axions

Generically f, and m, can depend on some field variables (e.g. the Higgs fields,
saxion, moduli, ...), and therefore can have nontrivial cosmological evolution
from the inflation epoch to the present time:

tr = Primordial inflation epoch

tqcp = QCD phase transition epoch with T(tqep) ~ 1 GeV
when the axion DM are produced ( m,(tqep) ~ Hitgep) )

tgp = Present

Depending on how f, and m, evolve from t1to tqcp. cosmological constraints
on axions take a different form.

(We will always assume the standard cosmology from tqcp to tg )

A particularly relevant question:

Was the PQ symmetry restored during the inflation epoch or not?



Scenario A:

PQ symmetry is non-linearly realized (spontaneously broken)

during inflation, and never restored thereafter

There is no PQ-strings or domain walls within our horizon, but the axion field
could have a nonzero misalignment together with a fluctuation produced
during the inflation epoch:

A ) 53(’{]) B H(tl}
fa(tI) o Q?Tfa(t]j}

" a/f,(ty) = ©

fo = (Fmis) = Averaged axion misalignment angle

I . . . . .
da(t;) = —— = axion fluctuation generated during inflation



* Relic axion dark matter: preskill Wise Wilczek ‘83: Abbott . Sikivie ‘83: Dine, Fischler ‘83; ...

o fate) \°
2 a\ 0
Qo ~ 0.2(02.) (1012c;ev) < 0.24

* Axion isocurvature pertu rbation: Axenides et al ‘83; Turner et al '85; Fox et al '04; ...

Axion field fluctuation produced during the primordial inflation:

ﬁﬂ{t[} HIItI)

00 = ~
fa(tl) Qﬂfa{t[}

If this fluctuation survives until tocp , which is the case as long as ma(t) < H(t)
over t < tqcp, It gives rise to an isocurvature perturbation of the axion dark
matter:

(E) 0 Pa Q. 0pa Q. 246

T DM QDM Pa Qpm bo

_. (PLANCK)
(QDM 1012 GeV mfa(t))

Axion abundance in Scenario A is determined by two independent parameters,
f.(t,) and O, and severely constrained by the isocurvature bound depending
on H(ty)/fa(ty) -




Scenario B:
The last spontaneous PQ breaking occurred after inflation
There are PQ -strings attached by N, domain walls, which cause cosmological

domain wall problem unless Ny, = 1:
PQ-string attached by domain walls

formed during the QCD phase transition

— |

TS Npw = 2

Cosmic string produced
during the PQ phase transition

/”—- ~
a a/ \\‘ 2
= 5 Z4on . Npw = > aiTr(T¢(ey))
f, f. J i

> /’

. - = nonzero integer

—T—_

= Axion domain-wall number = Npw = > q;Tr(T3(3)) = 1



There is no axion isocurvature perturbation, but axion dark matters can be
produced by the collapsing string-wall networks with Np, = 1,

Davis ‘86; Davis, Harari, Sikivie ‘87; Davis, Shellard ‘89, ...

as well as by the coherent oscillation of misaligned axion field:

fa(to) ) 7/

Q, ~ 0.2((6%.) + Raefec _
({(Brnis) + Raetect) (1012 GeV

Extensive numerical simulation =2 Rgefect ~ 30
Kawasaki et al, ‘14, Hiramatsu et al, ‘12, ...

= Axions are produced mostly by the collapsing string-wall network!

) 7/6

'ﬂ'a ~ 6 x (
S 4x10% GeV < fo(tg) < 5 x 101 GeV

Axion abundance in Scenario B is determined by the single parameter f,(t,),
and the model is required to have Ny, = 1, which is an unlikely feature of
the PQ symmetry obtained in top-down approach.



Scenario A and Scenario B are experimentally distinguishable!
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A frequently used summary of the constraints, which applies only when

fa(t1) ~ fa(to), ma(t) < H(t) for t < tqep, & Qa = Qpm for Scenario A:

Hertzberg, Tegmark, Wilczek ‘08;
107 07 10 10" 107 07 10 Visinelli, Gondolo ‘09;

1
r = tensnr/scalar Wanz, Shellard '10;
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Constraints for more generic situation with

fa(ty) # fa(to), ma(t) < H(t) for t < tQcD, & Q) < Qpum

m, (meV)
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For high scale inflation: H(t;) ~ 10

Q./Qpm
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The PQ symmetry should be either restored (Scenario B), or
spontaneously broken at much higher scale during inflation (Scenario A),

regardless of the value of O, /Qpy:

f,(t;) = 0 or

fa(tr) > fa(to)



What would be the most probable parameter region for the QCD axion
compatible with high scale inflation?

* For Scenario B (PQ symmetry restored during inflation), if one tries to get
such a PQ symmetry from top-down approach, e.g. within the framework of
string theory, usually one finds Npw > 1 which is not acceptable.

* For Scenario A (PQ symmetry spontaneously broken during inflation), the axion
scale during inflation can not be arbitrarily high as the perturbative axion
coupling can not be significantly weaker than the gravitational interaction:

(Weak gravity conjecture)
Arkani-Hamed, Motl, Nicolis, Vafa '07
2

Rgﬂzlf[m) =2 f.(tp) < 1017 GeV

gi

32721,

aGG > fa(tI)gC)(

* Accept the tuning of 0, if there is an anthropic reasoning, but no more tuning
than the one required by anthropic argument.



Axion DM in high scale inflation scenario compatible with
the weak gravity conjecture (also with m.(t) < H(t) for t < tqep )
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A model for axion DM in high scale inflation scenario
KC, Chun, Jeong, Im, in preparation
To avoid the isocurvature perturbation constraint on axion DM in high scale

inflation scenario, we need an epoch with m_(t) = H(t) between the primordial
inflation and the conventional QCD phase transition.

A key theoretical question about the axion model:
* What is the mechanism to determine the axion scale?

For f, < Mp;, PQ breaking triggered by SUSY breaking:

2 |#1°

=Pl

Such models can be easily embedded in string theory:

Shift symmetry which originates from higher-dim gauge symmetry

+ Anomalous U(1) gauge symmetry broken by the Stuckelberg mechanism

= U(1)pq which is unbroken in supersymmetric limit, and is well protected

from quantum gravity effects.



Models of PQ breaking triggered by SUSY breaking ( fa ~ vmsusyMp; ) provides

* an attractive solution of the py-problem Kim, Nilles ‘84

The bare Higgsino mass term (u-term) is forbidden by the PQ symmetry, and a right
size of y ~ mqqy IS generated by the spontaneous PQ breaking:

2 2
_ ¢*H.Hg4 B fa
W = Tpl T . = j_tHqu + ... - [ 1{]?1 IMSUSY

* late thermal inflation (TI) diluting the undesirable primordial relics Lyth, Stewart ‘95
(moduli, gravitinos, axion fluatuations, ...)

16
- - . @
V = Vo + (—mgysy + T%)[6[* + i |2

Mp

A

T > mgysy

2 2
Vo ~ Mysy O
T < Mgysy

> |9l

b0 ~ vVmsusyMpj

. . -1/4
=» Vacuum domination over Vi~ > T > mgusy

) 1
(# of e-foldings: Ne ~ lel(h-"lplflllsus&'} )



With this way to generate the p-term, the MSSM Higgs and/or sleptons can
have an unusual cosmological evolution.

Cosmological evolution of the MSSM flat directions H ,Hy & LH, can severely
depend on how the p-term is generated:

A

p:O (tNtTI)

X(t1) ~ vVmgusyMp;
X[

- 2 |~ |2
V(X) = mx|X] +W%]

u=0 (t > ty)

- > X = {VvH,H,, vLH, }
111%[qu|{"5 ~ trr) = mflu + mfld < 0, uﬁiqu(t > tpr) = 111%u + 111%1d + 2|,u.|2 =~ 0
2 2 2 2 .2 2 2
mig (t ~trr) = m? +mg < 0 , myyg (t > tr1) = m7 +myg + [p|” > 0

= * Higher EW scale, which gives rise to a higher QCD scale, and therefore
a heavier axion mass during thermal inflation

* Affleck-Dine type leptogenesis with LH,



A SUSY model for axion DM in high scale inflation scenario:

W = y,H, QU + yaHa QD + y/HqaLE® (MSSM)

o6  P*H,Hg LH.H.Hg

»PPC (PQ — sector o .
T MPl+ Mp; T Mp; + ¢ (PQ —sector) 4+ Inflaton — sector

Ul)pq: ¢ ¢ H, Hq LD° QU"ES
1 -3 0 6 -6 0
Mass scales of the model:

* Fundamental scale near the Planck scale Mp

* Primordial inflation energy scale Mj: H(t;) ~ .
Ipi

* SUSY breaking scale (at present) mgsusy

Induced scales:

* EW scale: Vgw ~ max(vH,Hg.vLH,)

* Axion scale: f, ~ max(¢, ¢, vVHuaHa, vVLHy)

2/11 «. 6/11
11151_15‘1:’)' ( VEW )

* QCD scales: Agep ~ 5 TeV ( TRY, 0L GV

for Vew > 10° mgusy



Cosmological history of the model:

Effective potential of the PQ-charged flat directions X; = {¢. ¢. VH,Ha.

OW |2
0X;

oW
YOX;

1""Flai"f — Z

i

+ (11112 + E;{R)) IX;]2 + (A iXi— + h. C)

(m; ~ A; ~ msysy, (R) ~ H?)

Primordial inflation epoch:

$apg H, <0, &5 >0

vH ~ +/LH, ‘UH t1)Mp; ~ 1016 GeVv

o(ty) = o(t) = 0

vLH,}



Thermal inflation epoch:

nl%-lul{d_.LHu e —111%]_]511? < 0

1113 ~ —mipsy + T2 > 0, 111_?5 ~ miygy > 0

2>  Vewl(tt) ~ VHHq ~ VLH, ~ vmgysyMp; ~ 10! GeV

fa(tTr) vH ~ vLH,; ~ vVmsusyMp] ~ 101 GeV

12
- - o (tTr)
O(trr) = o(tr) =0 = pltrr) = N 0
2/11 6/11
msusy \~ Vew |
A t ~ b TeV
qcp(trr) ~ 5 Te (TEV) (1011GEV)

m,(try) TeV \Y11 (101 Gev\ ' N Adcp(trr)
~ 10 > 1 | mu(tyy)
mMeusy fa(tTI) fa(tTI)

= During the thermal inflation epoch, axion field is settled down at the
minimum of its potential, effectively eliminating the primordial axion
field fluctuations.



Present (or the QCD phase transition epoch):

2 2 2
mflqu ~ —mipgy +2/u/* > 0, mig, ~ —mgyusy + gl >0

m? ~ —miygy < 0, 1113 ~ miygy > 0

I

-> faf_t{}) ~ Uft{}} ~ aft{}) ~ \/ll]gUgyl\«"Ipl ~ 101 GeV

o

(&V = A, with Ay ~ mgusy)

Pl

$*(to)

Mp)

[(te) = ~ IMSUSY

VEw (to) ~ msusy



The minimum of the axion potential at present (making |§] = 0) differs from

the minimum of the axion potential during the thermal inflation epoch!

LH H,H,
Mpr

The minimum of V,(tr;) depends on the interaction AV = A

. . ] »H H
while the minimum of v _(t,) depends on AV = A;M—d = BuH,Hq.
1Pl

fa
012 GeV
Is produced during the thermal inflation epoch, while the primordial axion

7/6
= O(1) misalignment of the axion field for Q. ~ 0.262, (1 ) ~ 0.24

fluctuations are diluted away.

(The cosmological evolution of LH, in this model successfully implements
the AD leptogenesis after the thermal inflation is over.)



Conclusion
* Axion is one of the best motivated DM candidates:
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* Within a conventional cosmological scenario with m,(t) « H(t) over t < tocp,
axion DM from misalignment is in conflict with high scale inflation:

Bound on axion isocurvature perturbation + Weak gravity conjecture

= The most probable parameter region: T T g
’ A A4
for H(t;) ~ 10" - 10 GeV : S
(tensor/scalar = 0.002 — 0.2) 2./CpM va —_—

f.(t) ~ 10° — 107 GeV

' Astrophysical bound

fa(to) ~ 10° — 10 GeV

107

Q. < Qpum

V
Wil o ool el ccnd 1l
1012 1013 1014 1015 1015 1017

i 1 L] 111 L \HIHIl L
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fa(tﬁj (C"E\;\J

* Axion DM from string-wall networks usually suffers from the domain wall
problem.



* Within a theoretically well motivated framework which explains
- Origin of the PQ symmetry which is unusually well protected from
quantum gravity effects:
Shift symmetry from higher-dim gauge symmetry
+ Anomalous U(1) gauge symmetry
- Origin of the axion scale:

Spontaneous PQ breaking triggered by SUSY breaking

> f. ~ VmsusyMp; ~ 10" GeV

- Origin of p~ mgysy:
The Higgs p-term generated as a consequence of PQ breaking

f2
> Tapl ~ MgUSY

a late thermal inflation with ma(tti) > H(tt1) can be naturally realized,

which dilutes away the primordial axion fluctuations, while producing

: . f, /6
an axion misalignment of O(1) necessary for 2. ~ 0.262; (1012 Ge\f) ~ 0.24



* This type of SUSY axion models predict

Cavity
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