IAS 2015

Physical Principles in Dynamical Information Processing

K. Y. Michael Wong

Hong Kong University of Science and Technology

Acknowledgement

Acknowledgement: Supported by the Research Grants Council of Hong Kong (HKUST 604512, 605813 and N_HKUST606/12).

Kin Lan

A Bridge to Al

What are the principles common to both biological and artificial information processors?

Clarkia Pulchella (Pink Fairies)

Brownian Motion

 In 1827, Brown studied the fertilization process in *Clarkia pulchella*.

- He noticed a "rapid oscillatory motion" of the pollen grains suspended in water under the microscope.
- Initially, he believed that such activity was peculiar to the male sexual cells of plants.
- Pollen of plants <u>dead for over a century</u> showed the same movement.
- The same motion could be observed even with <u>chips</u> of glass or granite or particles of smoke.

Einstein 1905

 $k_B T$

 $6\pi\eta a$

- The analysis of Brownian motion was done by Einstein in 1905.
- Einstein relation:

D = diffusion coefficient, measuring the <u>fluctuation</u> of the Brownian particles at equilibrium η = viscosity, measuring the response of the Brownian particles to an external driving force

Fluctuation-response relations

System	Fluctuation (Intrinsic Behavior)	Response (Extrinsic Behavior)
Brownian particles	Mean square displacement	Diffusion
Electrons	Nyquist noise	Conductance
Solids	Fluctuation of Energy	Heat Capacity

How About Neural Systems?

- How are the <u>intrinsic</u> (without stimuli) and <u>extrinsic</u> (with stimuli) properties related?
- What are the <u>implications</u> (esp. to neural responses)?
- Especially in the processing of <u>continuous</u> information, e.g. orientation, head-direction, spatial location

Processing Continuous Information

Continuous Info in Monkeys

Firing rate Tuning Width

Moving direction of dots

Activities of macaque Middle Temporal (MT) neurons (TD Albright 1984)

HD Cells Predict

Time Delays are Pervasive

- Why is prediction useful?
- Processing and transmission delays in neural systems: 50 to 100 ms
- Federer's fastest serve speed: 135 mph
- In 100 ms, displacement = 6 m!

Life-and-Death Issue

Catching a prey

Escaping from a predator

Negative Feedback Mechanisms

- Short-term synaptic depression (STD)
 - Degradation of synaptic couplings due to consumption of neurotransmitters after prolonged firing
- Spike Frequency Adaptation (SFA)
 - Desensitization of firing threshold after prolonged firing
- Inhibitory Feedback Connection from higher layers (IFL)

Short-term Depression (STD)

Tsodyks, Pawelzik & Markram (1998)

In the Presence of Stimuli

IAS Focused Program on

Computational Neuroscience: A Bridge to Artificial Intelligence

13 - 17 April 2015

Mixtures of Emitters and Population Spikes

Mixtures of Moving Bumps and Sloshers

- Now focus on moving bumps, most useful for tracking moving stimuli.
- In general, the moving bumps lag behind external stimuli, as shown in the flash lag effect.

Flash-Lag Effect

From Michael's "Visual Phenomena & Optical Illusions"

Warning: this is a subtle effect.

What to do

Fixate on the cross, but watch the moving ring. In other words: dissociate gaze direction and attention; this takes some practice.

What to observe

By now you will have noticed that the blue content of the ring is occasionally replaced by a yellow shape. Is it a full yellow disk or a yellow crescent? If you fixate on the cross, you should only see a crescent. If you follow the ring, you see the full disk. TLC (=tender loving cooperation) required ;-) [in other words: the effect can be somewhat subtle].

After R Nijhawan. ©2004-8 M. Bach

http://www.michaelbach.de/ot/mot-flashLag/index.html

Intrinsic: Spontaneous Motion

Neurons labeled by direction

- Spontaneous motion is caused by the presence of <u>slow</u>, <u>localized</u>, <u>negative</u> <u>feedback</u> (to be explained)
- <u>Slow</u>: the dynamics of building up the bump is not affected
- Localized: strong inhibition in active regions, weak inhibition in less active regions
- \Rightarrow increased mobility 22

Neural Field Models

External inputs

Exposed layer e.g. neuronal current, firing rate

Hidden layer/profile e.g. neurotransmitters, adaptive threshold, hidden layer

General Applicability

- Our results (in the next few slides) are applicable to <u>any</u> network structure as long as they satisfy these conditions:
 - (1) The dynamical equation is the same when the coordinates are <u>displaced</u> (translationally invariant).
 - (2) The dynamical equation is the same when the coordinates are <u>reflected</u> about the origin (inversion symmetry).
 - (3) There exists a <u>non-zero steady-state solution</u> of the exposed and hidden profiles <u>symmetric</u> with respect to an axis of symmetry (even parity).

Result 1: Lagging/leading ~ position stability/instability

- When the bump leads/lags the moving stimulus, anticipation time is +/-.
- Anticipation time: *c*ar
 extrinsic

- τ_{stim} = time scale for the stimulus to build the bump, proportional to (stimulus strength)/(bump height).
- τ_{int} = the time lag of the hidden profile behind the exposed profile
- λ = instability eigenvalue of the profile separation between the exposed and hidden profiles
- In the static phase, the bump lags behind the moving stimulus; in the moving phase, the bump leads the moving stimulus for weak and slow stimulus.

Result 2: Anticipation time = constant

- Anticipation time: $\tau_{ant} = \tau_{stim} \tau_{int} \lambda$
- Anticipation time is effectively independent of velocity

Anticipation Observed in Neural Systems

Goodridge & Touretzky (2002)

Fung, Wong & Wu (2012)

Result 3: Anticipation time ~ intrinsic speed²

In the moving phase,

$$\tau_{\rm ant} = \frac{\tau_{\rm stim} \tau_{\rm int}^3}{K} v_{\rm int}^2$$

 The contours of constant anticipation time and constant intrinsic speed correspond to each other.

Same for SFA and IFL

29

Conclusion

- The fluctuation-response relation relates the intrinsic and extrinsic behaviors in neural fields.
- Applicable to neural systems in general.
- Physical principles underlying both artificial and biological neural information processors.

