Inhibitory circuitry mechanisms for cortical processing and dynamics

Xiao-hui Zhang(章晓辉) Ph.D. & Professor Laboratory of Neural Circuit Plasticity <u>http://brain.bnu.edu.cn/home/xhzhang/index.php</u>

State Key Laboratory of Cognitive Neuroscience & Learning IDG/McGovern Institute for Brain Research Beijing Normal University

Cell constituents constructing the brain

Inhibitory GABAergic interneruon ("butterflies of the soul"- R.S. Cajal, 1932)
-More than 20 types, each possessing unique connectivity, territory & firing;
-Highly related to neural disease, e.g. epilepsy, schizophrenia, autism et al.

Working scenarios of GABA inhibitory circuits

Canonical Cortical Circuit

... All regional anatomical explorations implicate this postulate: a common functional identity [is determined by] the same type of structure and connections, whatever the mammal examined. -*Cajal*, 1922

Stabilizing

Fine-control of cortical vocabulary by enriched inhibitions from three major subtypes of inhibitory interneurons

Outline:

On the neuronal processing function

1. Single cells processing of synaptic inputs:

A simple arithmetic rule of dendritic integration of synaptic information.

- Hao et al., (2009) PNAS; Zhou et al., (2013) PLoS One; Li et al., (2014) PLoS Compt Biol

2. Emergence of sensory cortical selectivity: Synaptic integration mechanism.

-Ye et al., (2010) J Neurosci

<u>On cortical dynamics (oscillatory activities)</u>

1 Differential regulation of cortical β and γ oscillations by subtypes of cortical GABAergic interneurons.

Question (on cellular function of GABA inhibition)

How the cellular subdomain-specific GABA inhibition interacts (or integrates) with synaptic excitation in a principle/pyramidal cell?

How does a neuron do a subtraction at its different compartments?

GABA Inhibition: hyperpolarization and shunting inhibition

from "The principle of neural science"

"Addition" and "Subtraction" processes at the neuronal dendrite

"Addition": Summation of EPSPs

Two layer component model

"Subtraction": Summation of EPSPs and IPSPs

Modeling prediction: <u>On-the-path theorem</u>. For arbitrary values of ge > 0. gi > 0, Ee > 0 and $Ei \le 0$, the location where inhibition is maximally effective is always on the direct path from the location of the excitatory synapse to the some.

Rall (1964) in *Neural theory and model* Koch (1999) in *Biophysics of Computation*.

London and Hausser, 2005

Experimental measurement of E-I summation at the soma

CA1 pyramidal cell loaded with Alexa dye in acute brain slice

iontophoretic application of glutamate or GABA

Realistic simulation in NEURON (http://www.neuron.yale.edu/neuron/)

Detailed compartmental models

Reconstructed 3D morphology of CA1 cell (Cannon et al., 1998)

Passive cable properties

Active conductances: gNa, gKd, gK_A gIhand AMPA, NMDA, $GABA_A$ and $GABA_B$. receptors

Derivation of an empirical arithmetic rule

Dependence of k on the E and I locations – simulation results.

Experimental test of the dependence of k on the E and I locations

Dendritic domain-specific GABA shunting inhibition

Distal-proximal Asymmetry

GABA input (/) located at the trunk

(1)*k* (*shunting efficacy*) remains largely constant for distal excitatory inputs (*E*s);

(2) *k* decays rapidly with *E-I* distance for proximal *E*s.

-- "on-the-path" effect

GABA input (I) at oblique branch

(1) Shunting effect restricted within the branch, but higher efficacy (*k values*)(2) Same distal-proximal asymmetry.

-- local operator in branches

1. A simple empirical function quantitatively describing spatial summation of excitatory and inhibitory inputs in single principal cell:

Somatic Vsum $\approx V_{\text{EPSP}} + V_{\text{IPSP}} + k^* V_{\text{EPSP}}^* V_{\text{IPSP}}$

2. A biophysical base for understanding domain-specific inhibition produced by different types of inhibitory interneuron.

Hao et al., (2009) PNAS

Bilinearity in Spatiotemporal Integration of Synaptic Inputs

Songting Li¹, Nan Liu², Xiao-hui Zhang², Douglas Zhou¹*, David Cai^{1,3,4}*

The simple empirical rule is further generalized to a bilinear dendritic integration rule, in which the spatiotemporal summation of all synaptic inputs at discrete times can be decomposed into the sum of all possible pair-wise integration as follows.

$$V_{S}(t) = \sum_{p} V_{E}^{p}(t) + \sum_{q} V_{I}^{q}(t) + \sum_{i,j} \kappa_{EI}^{ij}(t) V_{E}^{i}(t) V_{I}^{j}(t) + \sum_{k,l} \kappa_{EE}^{kl}(t) V_{E}^{k}(t) V_{E}^{l}(t) + \sum_{m,n} \kappa_{II}^{mn}(t) V_{I}^{m}(t) V_{I}^{n}(t)$$
where V_{S} denotes the SSP, V_{E}^{p} denotes the p^{th} individual EPSP,
 V_{I}^{q} denotes the q^{th} individual inhibitory postsynaptic potential
(IPSP), κ_{EI}^{ij} , κ_{EE}^{kl} , and κ_{II}^{mn} are the corresponding proportionality
coefficients with superscripts denoting the index of the synaptic

Li, S.T., Liu N., Zhang X.H., Zhou D, & Cai D.* (2014) **PLoS Compt. Biol.** 10(12): e1004014. doi:10.1371/journal.pcbi.1004014.

Role of GABA inhibition in circuit processing

2. How does the integration of excitatory and inhibitory inputs determine the functional selectivity of sensory cortical cells?

How a sensory neuron is selectively tuned?

Selectivity of cortical neurons resposnes to sensory inputs

Ears, hair cells/ganglion cochleare

Hubel and Wiesel, J Physiol 1962

Direction selective A1 neuron – Spiking rate *vs.* membrane potentials

- Sound stimuli:
 - FM: 70 octave/s, either direction
 - Tone pips at pseudo-random order

$$DI = \frac{P_u - P_d}{P_u + P_d}$$

DI: Direction selectivity Index

Ye CQ et al., (2010) J. Neurosci.

Models of integration of excitatory and inhibitory spatiotemporal receptive fields (STRF)

Separation of excitatory and inhibitory synaptic conductances (*Ge* & *Gi*)

Modified from Wehr and Zador, Nature 2003

Characteristics of excitatory and inhibitory STRFs from a direction selective A1 neuron (preferring upward FM sound)

Ye CQ et al., J. Neurosci. (2010)

Prediction of direction selectivity (DI) from Ge or Gi STRFs

Spectra offset between *Ge* and *Gi* on the STRF from direction selective A1 neurons

Ye CQ et al., J. Neurosci. (2010)

Synaptic integration mechanism underlying the emergence of direction selectivity responses to FM sound in the A1

- Differential arrival timing of excitatory inputs over the spectral (frequency) dimension
- Asymmetric excitatory (*Ge*) and inhibitory(*Gi*) receptive field (RF) over the spectral dimension
- Both two mechanisms may generally underly the feature selectivity across different sensory modalities.

Role of GABA inhibition in regulating cortical dynamics

Temporal frequencies of synchronized neuronal activity in a neural network

-assayed by the spike synchrony among cells and local field potentials (LFPs, rhythmic synaptic activities)

Brainwave Type	Frequency range	Mental states and conditions
Delta	0.1Hz to 3Hz	Deep, dreamless sleep, non-REM sleep, unconscious
Theta	4Hz to 7Hz	Intuitive, creative, recall, fantasy, imaginary, dream
Alpha	8Hz to 12Hz	Relaxed, but not drowsy, tranquil, conscious
Low Beta	12Hz to 15Hz	Formerly SMR, relaxed yet focused, integrated
Midrange Beta	16Hz to 20Hz	Thinking, aware of self & surroundings
High Beta	21Hz to 30Hz	Alertness, agitation
Gamma	30Hz to 100Hz	Motor Functions, higher mental activity

Distinct connectivity and firing during neuronal oscillations

➤GABA Interneuron functions at Hub neuron orchestrate the hippocampal network activity;

Bonifizi et al., Science (2009)

➢GABA interneurons are densely connected with neighborhood PC cells.

SOM and chandelier cells (Fino1 & Yuste , *Neuron*, 2011; Fino et al., Neuroscientist, 2013; Taniguchi, et al., *Science*, 2013)

A existence of long-range GABA neuron projection across different brain areas. (Tamamaki & Tomioka, *Front. Neurosci.* 2010; Melzer, et al., *Science*, 2013)

Buzsaki (2004) *Nat Neurosci;* Bartos et al., (2007) *Nat Rev Neurosci;* Klusberger & Somogyi (2008) *Science* 3. How distinct subtypes of inhibitory cells and their synaptic circuits are involved in regulating synchronized cortical population activities?

- A optogenetic study on the different inhibitory circuits

MEA recording of neuronal activities (spike and LFPs) in V1 of awake mice

Characteristics of baseline LFPs across bands in active (running) and non-active (stationary) states

Visually evoked LFPs in active (running) and non-active (stationary) states --peaked at beta (15-30 Hz) band

Visually evoked increase of spike field coherence (SFC)

Visually-evoked increase of spike field coherence (SFC)

Transgenic expression of optogenetic channels (ChR2 or Arch) selectively to PV and SOM cells

Optogenetic manipulation and identification of inhibitory cortical PV cells

Optogenetic inactivation of inhibitory cortical PV cells

Optogenetic identification and manipulation of inhibitory SOM cells

Inhibitory synapses between the cortical PV and SOM interneurons (dis-inhibition pathway)

Dis-inhibitory synapses in the layer 4 circuit of mouse V1

Baseline activities: optogenetic inactivation (by Arch) of cortical SOM and PV cells

Optogenetic inactivation of cortical SOM cells selectively suppresses the evoked beta-band activities

Optogenetic inactivation of cortical PV cells globally suppresses evoked beta- / higher bands²

thalamic inputs

SON

Rhythmic activation of cortical SOM and PV cells evokes different temporal-frequency responses in local circuits

- 1) Drifting grating preferentially evokes beta-band activity.
- 2) Differential regulation of cortical oscillations by inhibitory cortical PV and SOM cells :
 - SOM cell / PCs sub-circuit exclusive for beta-band generation
 - PV cell / PCs sub-circuit for producing higher bands
 - Dis-inhibition connections between PV and SOM cells may contribute to the modulation cortical oscillations.

Take-home message:

- 1. Synaptic integration rule or mechanisms in the neuronal information processing.
 - > The simple empirical and generalized arithmetic rules.
 - Synaptic mechanisms underlying the emergence of cortical functional selectivity.
- 2. Differential sub-interneuronal circuits regulates distinct frequency bands of cortical population activities.

Acknowledgements

Lab @ BNU

Dr. Jiang Hao Dr. Xudong Wang Dr. Changquan Ye Guang Chen Qian Ye Dr. Qing-long Miao Dr. Xiaojing Chen Dr. Ling-jie He Yi-ding Li Yuan Zhang Dr. Qinghua Hu Xiang Gu

Grants from:

Nationnal Key Laboratory of Cognitive Neuroscience and Learning

Collaborators

<u>BNU</u>

Dr. Malte J Rasch

Dr. Si Wu

Dr. Yousheng Shu

SJTU & NYU: Dr. Songting Li

Dr. Douglas Zhou Prof. David Cai <u>MIT :</u> Dr. Guo-ping Feng <u>CSHL</u> : Prof. Josh Z. Huang

