Anticipative Dynamics in an Adaptive Excitable System

中央研究院物理研究所 國立中央大學物理系

陳志強

C. K. Chan Institute of Physics, Academia Sinica Dept of Physics, National Central University Taiwan

Collaborators

- C. C. Chen 陳俊仲 Academia Sinica, T
- P. Y. Lai 黎璧賢
- Y.J. Yang 楊穎任

Academia Sinica, Taiwan NCU, Taiwan 中央大學 NTU, Taiwan 臺灣大學

- S. Chen 陳曦 NTU, Taiwan
- H. Y. He 何浩源 NTU, Taiwan

Contents

- Anticipation, predictive coding and some examples
- Clock and intrinsic oscillation Models
- Adaptable excitable system as an "entrainable" oscillator with anticipative dynamics (FHN)
- Synaptic mechanism for anticipative dynamics (TM)
- Conclusions:

no central clock is needed

anticipative dynamics is an adaptation

time – sensed by entrained reverberations with STSP

Biological Time Scale

Buonomano VOLUME 3 NUMBER 10 OCTOBER 2007 NATURE CHEMICAL BIOLOGY

How do robots perceive the external world?

Stimuli	Example of Sensor	Effects
Temperature/Heat	Thermistor	Resistance
Chemicals	Spectral line absorption calculation	Number translator into voltage or current
Mechanical Stress	Piezoelectric device	Voltage
Light	Photo-Diode	Current
Time	Clock/Counter	Triggered Events

How do we perceive the external world?

Stimuli	Example of Sensor	Effects	Buddism
Temperature/Heat	transient receptor potential ion channel	Membrane potential Chemical release	Body
Chemicals	Ca, Na, K channels	Membrane potential Chemical release	Taste/Odor
Mechanical Stress	mechano-gated potassium channels	Membrane potential Chemical release	Sound/Touch/Body
Light	Light-gated ion channels Rhodopsin	Membrane potential Chemical release	Sight
Time	???	Anticipation	Mind / Pains?

Weak and strong anticipation

- Weak anticipation: the analytic method predicts an explicitly referenced future with an internal model
- Strong anticipation refers to an anticipation of events generated by the system itself

Predictive Coding and anticipation

- Minimize processing resources
- Focus only on changes

Rao et al. Wiley Interdisciplinary Reviews-Cognitive Science 2(5): 580-593.

Event-Related Potentials in the Retina and Optic Tectum of Fish

THEODORE H. BULLOCK, MICHAEL H. HOFMANN, FREDERICK K. NAHM, JOHN G. NEW, AND JAMES C. PRECHTL

- Compound field potential measured in optic tectum from elasmobranchs and teleosts.
- Diffuse light flashes \rightarrow Event-related potentials

JOURNAL OF NEUROPHYSIOLOGY Vol. 64, No. 3, September 1990. Printed in U.S.A.

Detection and prediction of periodic patterns by the retina

Schwartz et al 2007

VOLUME 10 | NUMBER 5 | MAY 2007 NATURE NEUROSCIENCE

OSR encoded in stimulation

Schwartz et al 2007

Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval

Germán Sumbre¹[†], Akira Muto², Herwig Baier² & Mu-ming Poo¹

Vol 456 6 November 2008 doi:10.1038/nature07351

Evoked motions

Amoebae Anticipate Periodic Events

- slime mold Physarum were exposed to unfavorable conditions presented as three consecutive pulses
- reduced locomotive speed in response to each episode.
- subsequently subjected to favorable conditions, spontaneously reduced their locomotive speed at the time when the next unfavorable episode would have occurred.

Expt with temperature stimulation

Statistical Analysis

The Clock Model

Centralized and specialized circuit Suprachiasmatic nucleus

68000 timing

2 WAIT STATE READ

Source: Nat Rev Nephrol © 2009 Nature Publishing Group

http://www.bigmessowires.com/2011/08/

Phase Model

$$\frac{d\theta_{i,j}}{dt} = \omega_j + \alpha H(t) \sin(2\pi\theta_{i,j}) + \xi_{i,j},$$

$$S = \sum_{j} \tanh\left(2\sum_{i}^{N} \frac{\cos 2\pi\theta_{i,j}}{N} + 3\right),$$

Tetsu Saigusa et al

PRL 100, 018101 (2008)

Long-period rhythmic synchronous firing in a scale-free network

$$\begin{aligned} \frac{du_i}{dt} &= -\frac{1}{\epsilon} u_i \left(u_i - 1 \right) \left(u_i - \frac{v_i + b}{a} \right) + \sum_{j \neq i}^N H_j \\ \tau \frac{dv_i}{dt} &= f(u_i) - v_i, \end{aligned}$$

Mi et al 2013

Intrinsic Oscillation Model

Schwartz, Ph.D. Thesis (2008)

Filter Model

Linear ordinary differential equations with additional tuning mechanism

Gao et al 2009 Computation in Neural Systems

Learning of a memristor

- memory resistor (proposed, Chua 1971)
- History dependent resistor -
- thin film TiO2 (HP Labs 2008)
- Adaptive Control -

L = i(t)

R

e(t)

Network State-dependent Model

- Non-localized
- Cerebellum, Cortical
- Inherently able to process time information
- Captured in the time-dependent state of the network
- Short term synaptic plasticity (Adaptation)
- Strong anticipation

Adaptive Excitable System

FitzHugh-Nagumo Model

$$\frac{dv}{dt} = v - \frac{v^3}{3} - w + I_{ext}(t)$$
$$\tau_w \frac{dw}{dt} = v + a$$

Adaptive Control of a $\frac{da}{dt} = \frac{1}{\tau_a} \mathop{(\hat{a}-a)}_{\uparrow}$ Entrained a Α 1.2 ° adaption ^a 0.8 AAAAA reduced potential v200 400 600 800 1000 1200 1400 1600 0 reduced time t

$$\frac{da}{dt} = \frac{\left[(1-p)a_0 + \frac{pa_0^3}{3}\right] - pw - a}{\tau_a}$$

Effects of different parameters

Optimal Retention of periodicity information

Network Spike and Single Cell Spike

Single cell Spike	Population Spike
Single Unit	Cooperative Phenomenon
Depolarization (Action Potential)	Bursting
A few ms	100ms ~ 1000ms
Excitability (Na)	Short Term Synaptic Plasticity Recurrent Connectivity
Refractoriness (K)	Depletion of neural transmitters
Repolarization	Recovery of neural transmitters

TM Model

$$\frac{dE}{dt} = \frac{1}{\tau} \left[-E + \alpha \ln \left(\frac{1 + e^{\frac{JuxE+I}{\alpha}}}{2} \right) \right]$$

$$\frac{dx}{dt} = \frac{1-x}{\tau_D} - uxE$$

$$\frac{du}{dt} = \frac{U-u}{\tau_F} + U(1-u)E$$

Adaptive of excitability!!!

$$\tau = 0.01 s, \tau_D = 0.2 \tau_F = 1.5 s$$

Cortes, J. M., et al. (2013, PNAS 110(41): 16610-16615.

Observation of OSR in TM model

Encoding of stimulation period

Time is coded into Calcium

Available neurotransmitter fraction : *x*

Releasing probability : *u* (related to [Ca²⁺])

Is adaptation enough?

strongest Response from missing stimulation

Predictive Coding and anticipation

- Minimize flow of information
- Focused only on changes

Rao et al. Wiley Interdisciplinary Reviews-Cognitive Science 2(5): 580-593.

Hallmarks of strong anticipation

- is an achievement by the system as a whole.
- is owed to proper organization.
- uses the natural unfolding of events
- is purely reactive at some level of analysis.
- relates implicitly to future states.

How do living systems perceive the external world?

Stimuli	Example of Sensor	Effects
Temperature/Heat	transient receptor potential ion channel	Membrane potential Chemical release
Chemicals	Ca, Na, K channels	Membrane potential Chemical release
Mechanical Stress	mechano-gated potassium channels	Membrane potential Chemical release
Light	Light-gated ion channels Rhodopsin	Membrane potential Chemical release
Time	Adaptive Excitable System (recurrent network + STSP)	Anticipation Sustained reverberations

Conclusions

- Adaptive excitable system is capable of producing anticipative dynamics (OSR)
- Entrained reverberations with short-term synaptic plasticity can sense the periodicity of stimulations with time encoded in [Ca]
- No clock is needed; strong anticipation
- Inhibition needed for predictive coding seen in experiments