The Effect of Inhomogeneous Connectivity on Higher-Order Correlations

Yasuhiko Igarashi1 and Masato Okada1,2

1Graduate School of Frontier Sciences, The University of Tokyo, Japan.
2RIKEN Brain Science Institute, Japan.

It is widely acknowledged that dependencies among cells determine the detailed nature of a neural population code, namely, the manner in which information is represented by specific patterns of spiking and silence over a group of neurons. Ko \textit{et al.} have reported that connectivity between neighbouring neurons is specifically structured, which affected the firing rates and neural correlations \cite{Ko2011}. It would appear that these structured neural connectivities in V1 also affects the structure of higher-order correlations in neuronal firing.

Here, we expanded the previous theoretical framework to higher-order correlations in a parsimonious structured network with common inputs and spiking non-linearities as a model of orientation selectivity \cite{Macke2011}. We found that the inhomogeneous mean inputs modulate the spiking nonlinearity to result in the structured higher-order correlations and heterogeneous structure of the network can dynamically control the structure of 3rd-order correlations and can generate both sparse and synchronized neural activity\cite{Ohiorhenuan2010, Ohiorhenuan2011}, and proposed a decisive experiment to test the effect of inhomogeneous connectivity on higher-order correlations.