Shifted Encoding Strategy in Retinal Luminance Adaptation: From Firing Rate to Neural Correlation

Si Wu

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China

Neuronal response to prolonged stimulation attenuates over time. Here, we ask a fundamental question: is adaptation a simple process for the neural system to ignore the sustained input, or it actually underlies a strategy for the neural system to utilize resources efficiently to encode the stimulus information. Through simultaneously recording the activities of a group of bullfrog's retinal ganglion cells (dimming detectors) in response to sustained dimming stimulations, we applied a combination of information analysis approaches to explore the time-dependent nature of information encoding during the adaptation. We found that at the early stage of the adaptation, the stimulus information was mainly encoded in firing rates; whereas at the late stage of the adaptation, it was more encoded in neuronal correlations. Such a transition in encoding properties is not a simple consequence of the attenuation of neuronal firing rates, but rather involves an active change in the neuronal correlation strengths, suggesting that it is a strategy adopted by the neural system for functional purposes. Our results reveal that in encoding a prolonged stimulation, the neural system may utilize concerted, but less active, firings of neurons to encode the information, a strategy which is economically efficient.