Higher-order Correlation in a Feed-forward Network with Inhomogeneous Connectivity

Yasuhiko Igarashi¹ and Masato Okada^{1,2}

¹*Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan.* ²*RIKEN Brain Science Institute 2-1 Hirosawa, Wako, Japan.*

We investigated a parsimonious structured network with common inputs and spiking non-linearities. Unlike a homogeneous network [1], a network with heterogeneous connections can provide not only a tuning curve of firing rates but also a relationship among the statistics gathered from neurophysiological experiments in the primary visual cortex[2,3]. We found that the heterogeneous structure of the network can dynamically control the structure of 3rd-order correlations and can generate both sparse and synchronized neural activity, and proposed a decisive experiment to test the effect of inhomogeneous connectivity on higher-order correlations. These theoretical results indicate that the 3rd-order correlations resulting from visual stimulation can carry stimulus-specific information.

[1] J. Macke, M. Opper and M. Bethge, Phys. Rev. Lett., 106, 1 (2011).

[2] I. E. Ohiorhenuan et al., Nature, 466(7306), 617 (2010).

[3] I. E. Ohiorhenuan and J. D. Victor, J. Comput. Neurosci., 30(1), 125 (2011).